

Prostal Limited.

1F., No.40, Aly. 22, Ln. 143, Ruiping Rd., Yangmei Disty, Taoyuan City 32658, Taiwan TEL: +886-3-4828372 Fax: +886-3-4828377 URL: www.prostal.com.tw E-MAIL: joan@prostal.com.tw

Build-out Attenuator

Rev. 16A

Description

Prostal's SM and MM Attenuators can be applied to adjust the power levels of signals in optical communications at the output of light sources, E/O converters and for testing the linearity or dynamic range of optical power meters.

Prostal Attenuators can also be used in optical amplifier systems to balance the gain across the different operating wavelengths. We manufactures the SC, SC/APC, FC, FC/APC, ST, D4, DIN, LC and MU styles to meet your specific requirements.

Features

- Precise attenuation value
- Excellent reflectance
- Perfect environmental stability and reliability
- Flawless end face
- ✤ Dual window (1310nm/1550nm)
- ✤ 1dB increment

Applications

- Telecommunications
- ✤ CATV / LAN, FTTH
- Subscriber loop

Prostal Limited.

1F., No.40, Aly. 22, Ln. 143, Ruiping Rd., Yangmei Disty, Taoyuan City 32658, Taiwan TEL: +886-3-4828372 Fax: +886-3-4828377 URL: www.prostal.com.tw E-MAIL: joan@prostal.com.tw

Product Specifications

Specifications		Value		
Item		Single-Mode	Multi-Mode	
Wavelength		1310nm and 1550nm	850nm	
		1310nm or 1550nm		
Attenuation Range		$1 dB \sim 30 dB$	$1 dB \sim 10 dB$	
Attenuation Variation		\leq 5dB: ±0.5dB, ±0.75dB	\leq 6dB: ±1dB	
		>5dB: ±10%, ±15%	>6dB, ±15%	
Reflectance	PC	\geq 50dB	\geq 30dB	
	UPC	\geq 55dB		
	APC	\geq 65dB		
Operation Temperature		-40°C ∼ 75°C	-40°C ∼ 75°C	
Storage Temperature		-40°C ∼ 85°C	-40° C ~ 85° C	

Ordering Information

AT - [-	-		-
Connector:	Wavelength:	Attenuation	1:	Reflectance:	Tolerance:
1 = SC/UPC	13 = 1310nm	01 = 1dB	08 = 8dB	$S = \ge 50 dB$	$A = \pm 0.5 \text{ dB}$
2 = FC/UPC	15 = 1550nm	02 = 2dB	09 = 9dB	$P = \ge 55 dB$	$B = \pm 0.75 \text{ dB}$
3 = SC/APC	35 = 1310nm	03 = 3dB	10 = 10dB	$U = \ge 56 dB$	$C = \pm 5\%$
4 = FC/APC	& 1550nm	04 = 4dB	11 = 11dB	$D = \ge 60 dB$	$D = \pm 10\%$
5 = LC/UPC	83 = 850nm	05 = 5 dB	=dB	$A = \ge 65 dB$	$E = \pm 1 dB$
6 = MU/UPC	& 1310nm	06 = 6dB	=dB	5 = 50/125um	$F = \pm 15 \%$
7 = ST/UPC	85 = 850nm	07 = 7 dB	30 = 30dB	6 = 62.5/125	A & B & E & F
8 = D4/PC				(um)	for ≤ 10 dB;
9 = LC/APC					C & D & F for ≥ 10 dB
A = MU/APC					A~F for SM
$\mathbf{B} = \mathbf{SC}/\mathbf{PC}$					D & E & F for MM
C = FC/PC					
D = LC/PC					
E = MU/PC					
F = ST/PC					
G= DIN/PC					